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1 Value at Risk

1.1 The Measure

What is value at risk (VaR)? and why should we care?

Imagine you are monitoring the risk of a portfolio, a nature question to ask is “how bad can it be tomorrow?”
or “How much can I loss tomorrow?” VaR gives a simple answer by providing a number that can summarize
the total risk of your portfolio.

−For example, you can make the following statement:
I am 99% sure that we will not suffer from a loss of more than 1 million U.S. dollar in the next 5 days.
1 million is the VaR number. It relates to two things: (1) the confidence level: e.g. 99%; (2) time horizon: e.g.
5 days.

−If you change the confidence level, VaR changes correspondingly. For example:
I am 99.9% sure that we will not suffer from a loss of more than 2 million U.S. dollar in the next 5 days.

Approximation: Time horizon conditional on a fixed confidence level

N-day x% VaR=
√
N * (1-day x% VaR)

For example: 5-day 99% VaR =
√
5 * (1-day 99% VaR). Note that, it is an approximation.

Another example: if regulator requires a bank to hold capital equals 3 times the 5-day 99% VaR. Then, the
bank has to hold, approximately, 3*(

√
5) *(1-day 99% VaR)

1.2 Historical Simulation

Illustration: Historical simulation method is based on the idea of using the past to tell the future. The
assumption is that history repeats itself.

What do we want to know? Let’s say I have $100 invested in a stock today. I want to be 99% sure
that I will not suffer from a loss of more than x U.S. dollar tomorrow. Then, what’s the value of this x?

What to do? First, we obtain the historical prices of this stock for the past 1,001 days (sample in daily
frequency). This allows us to calculate 1,000 daily returns. Using these 1,000 daily returns plus today’s value
of our investment ($100), we can have 1,000 possible outcomes for tomorrow’s P/L. In other words, we build up
1,000 scenarios of what can happen between today and tomorrow using the past information. Second, sort the
1,000 daily returns from the lowest to the highest. The tenth (1%*1,000) lowest gain (highest loss) is the value
of x if one wants to be 99% sure. Note that x takes the absolute value of the tenth lowest gain. For example, if
the tenth lowest gain is -1.26. Then, x equals 1.26. The statement is that I am 99% sure that we will not suffer
from a loss of more than 1.26 million U.S. dollar tomorrow (in the next 1 day).

Note: the key assumption is that we believe the sample (1,001 historical prices) can represent
what will happen between today and tomorrow.

1.2.1 Historical Simulation: Examples

We use three examples to calculate the 1-day 99% VaR for a portfolio using historical simulation method.

1The purpose of the use is non-commercial research and/or private study. Please do not copy, cite, or distribute without
permission of the author.

2Email: liyifinhub@outlook.com Please email me if you find any errors.
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Table 1: Portfolio with Single Asset
Day Price($) Return Investment Scenarios Tomorrow’s P/L($) Sorting
0 201.82135 Asset Scenarios Tomorrow’s P/L($)
1 197.66101 -2.06% $400 1 -8.245587496 19 -8.65568581
2 198.86664 0.61% 2 2.439787177 20 -8.463237473
3 200.83316 0.99% 3 3.955458834 1 -8.245587496
4 199.37062 -0.73% 4 -2.912943261 10 -5.971029613
5 200.90234 0.77% 5 3.073116776 14 -3.162885968
6 202.78981 0.94% 6 3.75797706 4 -2.912943261
7 202.08818 -0.35% 7 -1.383953168 8 -2.249404185
8 200.95174 -0.56% 8 -2.249404185 17 -1.71690854
9 203.23450 1.14% 9 4.543899039 7 -1.383953168
10 200.20070 -1.49% 10 -5.971029613 13 -0.325557621
11 204.77611 2.29% 11 9.141644406 15 1.391157103
12 206.37698 0.78% 12 3.127075743 2 2.439787177
13 206.20902 -0.08% 13 -0.325557621 5 3.073116776
14 204.57848 -0.79% 14 -3.162885968 12 3.127075743
15 205.28998 0.35% 15 1.391157103 16 3.735397156
16 207.20708 0.93% 16 3.735397156 6 3.75797706
17 206.31769 -0.43% 17 -1.71690854 3 3.955458834
18 210.52747 2.04% 18 8.161739385 9 4.543899039
19 205.97182 -2.16% 19 -8.65568581 18 8.161739385
20 201.61385 -2.12% 20 -8.463237473 11 9.141644406

In the first example, the portfolio consists of a single asset. In the second example, the portfolio contains two
assets denominated in the same currency. In the third example, the portfolio contains three assets denominated
in three different currencies.

The VaR is calculated at the end of today. The assumption is that the portfolio will remain unchanged over
the next business day.

− Example 2.1:

Setting: (1) Calculating 1-day 90% VaR using the 21 historical daily prices; (2) Portfolio con-
tains a single asset: $400 invested in stock A (Asset 1), which price is denominated in U.S. Dollar.

The detailed calculation is shown in Table 1.

As shown in Table 1, 21 historical prices gives 20 daily returns. Those 20 daily returns provide 20 scenarios
of what can happen between today and tomorrow. With the assumption that the value of investment is $400,
we can have 20 possible outcomes for tomorrow’s profit and loss. Ranking these 20 P/Ls from lowest to high-
est, the second (10%*20) highest loss (the 20th scenario as shown in the table) is the one that we are looking for.

Now, we can make the following statement: I am 90% sure that we will not suffer from a loss of more than
around 8.46 U.S. dollar tomorrow/the next day.

− Example 2.2:

Setting: (1) Calculating 1-day 90% VaR using the 21 historical daily prices; (2) Portfolio contains
two assets: $400 invested in stock A (Asset 1) and $200 invested in stock B (Asset 2). Both prices
are denominated in U.S. Dollar.

The detailed calculation is shown in Table 2.

As shown in Table 2, 21 historical prices gives 20 daily returns. Those 20 daily returns provide 20 scenarios of
what can happen between today and tomorrow. With the assumption that the value of my investment is $400
in Asset 1 and $200 in Asset 2, we can have 20 possible outcomes for tomorrow’s total3 profit and loss. Ranking

3The calculation process is similar to what we have done in Example 1 (shown in Table 1). We perform the same calculation
for both assets separately. The ”P/L of the portfolio” is the sum of ”P/L of Asset 1” and ”P/L of Asset 2”. Then, we sort the
P/Ls of the portfolio to find out the loss value.
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Table 2: Portfolio with Two Assets both denominated in U.S. Dollar
Asset1 Asset2 Asset1 Asset2 Investments Scenarios Tomorrow’s P/L($)

Day Price($) Price($) Return Return Asset1 Asset2
0 201 185 $400 $200 Asset1 Asset2 Portfolio
1 197 182 -1.99% -1.62% 1 -7.96 -3.24 -11.20
2 198 188 0.51% 3.30% 2 2.03 6.59 8.62
3 200 189 1.01% 0.53% 3 4.04 1.06 5.10
4 199 196 -0.50% 3.70% 4 -2.00 7.41 5.41
5 200 186 0.50% -5.10% 5 2.01 -10.20 -8.19
6 202 187 1.00% 0.54% 6 400 1.08 5.08
7 202 188 0.00% 0.53% 7 0.00 1.07 1.07
8 200 193 -0.99% 2.66% 8 -3.96 5.32 1.36
9 203 194 1.50% 0.52% 9 6.00 1.04 7.04
10 200 196 -1.48% 1.03% 10 -5.91 2.06 -3.85
11 204 195 2.00% -0.51% 11 8.00 -1.02 6.98
12 206 200 0.98% 2.56% 12 3.92 5.13 9.05
13 206 201 0.00% 0.50% 13 0.00 1.00 1.00
14 204 197 -0.97% -1.99% 14 -3.88 -3.98 -7.86
15 205 200 0.49% 1.52% 15 1.96 3.05 5.01
16 207 196 0.98% -2.00% 16 3.90 -4.00 -0.10
17 206 198 -0.48% 1.02% 17 -1.93 2.04 0.11
18 210 203 1.94% 2.53% 18 7.77 5.05 12.82
19 205 204 -2.38% 0.49% 19 -9.52 0.99 -8.54
20 201 206 -1.95% 0.98% 20 -7.80 1.96 -5.84

these 20 cases from lowest to highest, the second (10%*20) highest loss (the 19th scenario) is the one that we
are looking for.

Now, we can make the following statement: I am 90% sure that we will not suffer from a loss of more than 8.54
U.S. dollar tomorrow (the next day).

− Example 2.3:

Setting: (1) Calculating 1-day 90% VaR using the 21 historical daily prices; (2) Portfolio contains
three assets: $1,000 invested in stock A (Asset 1), £3,000 invested in stock B (Asset 2), and ¿

1,000 invested in stock C (Asset 3). The prices of Assets 1, 2, and 3 are denominated in U.S.
Dollar, GBP, and EUR.

The detailed calculation is shown in Table 3.

As shown in Table 3, 21 historical prices gives 20 daily returns. These 20 daily returns provide 20 scenarios of
what can happen between today and tomorrow. The twist here is to first transform all assets’ prices into local
currency. In our case, it’s the U.S. Dollar4. Then, we can calculate the dollar returns for each asset. With the
assumption that the value of investment is $1,000 in Asset 1, £3,000 in Asset 2 and ¿ 1,000 in Asset 3, we can
have 20 possible outcomes for tomorrow’s profit and loss of each asset. Tomorrow’s total profit and loss of the
portfolio is obtained by summing up all three assets’ P/Ls. This gives us 20 possible outcomes for the P/L of
our portfolio tomorrow. Ranking these 20 P/Ls from lowest to highest, the second (10%*20) highest loss (the
3rd scenario) is the one that we are looking for.

Now, we can make the following statement: I am 90% sure that we will not suffer from a loss of more than 48.3
U.S. dollar tomorrow (the next day).

1.3 Variance-Covariance Approach

When using the variance-covariance approach to calculate the VaR, one of the most important steps is to obtain
the volatility of the portfolio, that is the variance-covariance matrix.

Here are the steps: (1) get the historical prices of the underlying assets (for a given period); (2) calculate
the returns for each asset; (3) obtain the variance-covariance matrix based on those returns; (4) get the matrix

4If you are with a Swiss bank, all prices should be transformed into CHF.
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Table 3: Portfolio with Three Assets Denominated in Different Currencies
Asset1 Asset2 Asset3 Exchange Rate Adjusted Prices($) Asset1($) Asset2($) Asset3($)

Day Price($) Price(GBP) Price(EUR) USD/GBP USD/EUR Asset2($) Asset3($) Return Return Return
0 3232 6239 12608 1.909 1.286 11910.2 9804.0
1 3207 6233 12260 1.907 1.283 11886.3 9555.7 -0.77% -0.20% -2.53%
2 3190 6231 12310 1.908 1.288 11888.7 9557.4 -0.53% 0.02% 0.02%
3 3102 6239 12232 1.891 1.277 11797.9 9578.7 -2.76% -0.76% 0.22%
4 3121 6218 12089 1.897 1.276 11795.5 9474.1 0.61% -0.02% -1.09%
5 3100 6213 12177 1.892 1.274 11754.9 9558.0 -0.67% -0.34% 0.89%
6 3124 6217 12093 1.895 1.278 11781.2 9462.4 0.77% 0.22% -1.00%
7 3113 6212 12523 1.910 1.285 11864.9 9745.5 -0.35% 0.71% 2.99%
8 3115 6235 12262 1.893 1.286 11802.8 9534.9 0.06% -0.52% -2.16%
9 3097 6229 12330 1.879 1.282 11704.2 9617.7 -0.58% -0.84% 0.87%
10 3117 6240 12281 1.897 1.291 11837.2 9512.7 0.65% 1.14% -1.09%
11 3131 6218 12382 1.888 1.281 11739.5 9665.8 0.45% -0.83% 1.61%
12 3150 6234 12315 1.893 1.279 11800.9 9628.6 0.61% 0.52% -0.39%
13 3123 6231 11911 1.891 1.279 11782.8 9312.7 -0.86% -0.15% -3.28%
14 3089 6234 11949 1.886 1.274 11757.3 9379.1 -1.09% -0.22% 0.71%
15 3053 6228 11970 1.892 1.275 11783.3 9388.2 -1.17% 0.22% 0.10%
16 3100 6234 12530 1.905 1.283 11875.7 9766.1 1.54% 0.78% 4.03%
17 3115 6238 12617 1.901 1.279 11858.4 9864.7 0.48% -0.15% 1.01%
18 3122 6241 12819 1.903 1.280 11876.6 10014.8 0.22% 0.15% 1.52%
19 3112 6233 12430 1.892 1.280 11792.8 9710.9 -0.32% -0.71% -3.03%
20 3055 6235 12487 1.880 1.278 11721.8 9770.7 -1.83% -0.60% 0.62%

Continue
Asset1($) Asset2($) Asset3($) Investment Scenarios Tomorrow’s P/L ($)
Return Return Return Asset1 Asset2 Asset3

$1000 £3000 ¿1000 Asset1 Asset2 Asset3 Portfolio
-0.77% -0.20% -2.53% 1 -7.7 -6.0 -25.3 -39.1
-0.53% 0.02% 0.02% 2 -5.3 0.6 0.2 -4.5
-2.76% -0.76% 0.22% 3 -27.6 -22.9 2.2 -48.3
0.61% -0.02% -1.09% 4 6.1 -0.6 -10.9 -5.4
-0.67% -0.34% 0.89% 5 -6.7 -10.3 8.9 -8.2
0.77% 0.22% -1.00% 6 7.7 6.7 -10.0 4.4
-0.35% 0.71% 2.99% 7 -3.5 21.3 29.9 47.7
0.06% -0.52% -2.16% 8 0.6 -15.7 -21.6 -36.7
-0.58% -0.84% 0.87% 9 -5.8 -25.1 8.7 -22.1
0.65% 1.14% -1.09% 10 6.5 34.1 -10.9 29.6
0.45% -0.83% 1.61% 11 4.5 -24.8 16.1 -4.2
0.61% 0.52% -0.39% 12 6.1 15.7 -3.9 17.9
-0.86% -0.15% -3.28% 13 -8.6 -4.6 -32.8 -46.0
-1.09% -0.22% 0.71% 14 -10.9 -6.5 7.1 -10.3
-1.17% 0.22% 0.10% 15 -11.7 6.6 1.0 -4.0
1.54% 0.78% 4.03% 16 15.4 23.5 40.3 79.2
0.48% -0.15% 1.01% 17 4.8 -4.4 10.1 10.6
0.22% 0.15% 1.52% 18 2.2 4.6 15.2 22.1
-0.32% -0.71% -3.03% 19 -3.2 -21.2 -30.3 -54.7
-1.83% -0.60% 0.62% 20 -18.3 -18.1 6.2 -30.2

in dollar term (this is the same for all approaches. We start with percentage returns, then, get the single or
matrix % in dollar term; (5) The 99% Value-at-Risk = 2.33*stdev; 95% Value-at-Risk =1.65*stdev.

− Example 3.1: We will use the same example5 in Hull (2017) as our first example. Then, we will replicate
the results using Python, Matlab, and R.

Setting: (1) Position: $10 million in Microsoft shares and $5 million in AT&T shares; (2) Daily volatility of
‘Microsoft returns’ is 2% and daily volatility of ‘AT&T returns’ is 1%; (3) The correlation of the returns on
the two shares is 0.3

Assumption: The returns of the shares have a normal distribution.

Question: What is the 1-Day 99% VaR and 10-Day 99% VaR of this portfolio?

We know 10-Day 99% VaR=
√
10*1-Day 99% VaR, so we need to get 1-Day 99% VaR first. Also, by using the

formula: 99% Value-at-Risk = 2.33*stdev, once we have stdev (portfolio’s dollar volatility), we can obtain the
1-Day 99% VaR. The portfolio’s dollar volatility can be calculated using each stock’s dollar volatility.

Solve:
−We are given the volatility of returns in percentage term. First, we change the given volatility into dollar term.

5The example here refers to the example in Two-Asset case of model-building approach introduced in Section 21.3.
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σMicrosoft=2%*10=0.2
σAT&T=1%*5=0.05

−‘Variance’ of the ‘change in the value of the portfolio’ during ‘1-day period’ is:

σ2
portfolio=σ2

Microsoft+σ2
AT&T+2ρσMicrosoftσAT&T

=0.22+0.052+2*0.3*0.2*0.05=0.0485

This means, σportfolio=0.220227
Then, 1-Day 99% VaR=2.33*0.220227=0.513129 million
10-Day 99% VaR=

√
10*1-Day 99% VaR=1.622657 million

Python: Example 3.1
import numpy as np # If you do not have numpy installed, type: ’python -m pip install -U pip’ in
’cmd’; then, type ’pip install numpy’.)
investment=np.array([10,5])
cov portfolio=np.array([[4e-04,6e-05],[6e-05,1e-04]])
var portfolio=investment.T.dot(cov portfolio).dot(investment)
stdev portfolio=np.sqrt(var portfolio)
var=2.33*stdev portfolio

Matlab: Example 3.1
investment=[10,5];
cov portfolio=[0.0004,0.00006;0.00006,0.0001];
var portfolio=investment*cov portfolio*transpose(investment);
stdev portfolio=sqrt(var portfolio);
var=2.33*stdev portfolio;

R: Example 3.1
investment=rbind(c(10,5))
cov matrix=rbind(c(4e-04,6e-05),c(6e-05,1e-04))
var portfolio=investment%*%cov matrix%*%t(investment)
stdev portfolio=sqrt(var portfolio)
var=2.33*stdev portfolio

− Example 3.2: We will use the same example in Ken Abbott’s VAR lecture note as our second example.
Then, we will replicate the results using Python, Matlab, and R.

Setting: (1) Position: $100 in CAD/USD, $50 in CHF/USD, and $25 in DEM/USD; (2) Variance and covari-
ance matrix is as

0.000037 -0.000018 -0.000017
-0.000018 0.000321 0.000257
-0.000017 0.000257 0.000227

Assumption: Return follows a normal distribution.

Question: What is the 1-Day 99% VaR of this portfolio?
−We are given the volatility of returns in percentage term. First, we change the given volatility into dollar term.

σCAD/USD=
√
0.000037*100=0.608276

σCHF/USD=
√
0.000321*50=0.895823

σDEM/USD=
√
0.000227*25=0.376662

ρCAD/USD,CHF/USDσCAD/USDσCHF/USD=100*50*-0.000018=-0.09
ρCAD/USD,DEM/USDσCAD/USDσDEM/USD=100*25*-0.000017=-0.0425
ρCHF/USD,DEM/USDσCHF/USDσDEM/USD=50*25*0.000257=0.321250
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Python: Example 3.2
import numpy as np
investment=np.array([100,50,25])
cov matrix=np.array([[0.000037,-0.000018,-0.000017],[-0.000018,0.000321,0.000257],
[-0.000017,0.000257,0.000227]])
var portfolio=investment.T.dot(cov matrix).dot(investment)
stdev portfolio=np.sqrt(var portfolio)
var=2.33*stdev portfolio

Matlab: Example 3.2
investment=[100,50,25];
cov matrix=[0.000037,-0.000018,-0.000017;-0.000018,0.000321,0.000257;-0.000017,0.00 0257,0.000227];
var portfolio=investment*cov matrix*transpose(investment);
stdev portfolio=np.sqrt(var portfolio);
var=2.33*stdev portfolio;

R: Example 3.2
investment=rbind(c(100,50,25));
cov matrix=rbind(c(0.000037,-0.000018,-0.000017),c(-0.000018,0.000321,0.000257),c(-
0.000017,0.000257,0.000227));
var portfolio=investment%*%cov matrix%*%t(investment)
stdev portfolio=sqrt(var portfolio)
var=2.33*stdev portfolio

Python: Example 3.3
import numpy as np
import pandas as pd
import pandas datareader as pdr
ticker=[’AAPL’,’DIS’,’EBAY’,’FB’]
# Position setting:
investment=np.array([0.35, 0.3, 0.25, 0.1]) # Set this directly
# Alternatively: try the belowing three lines
total=1 # Total investment as 1 million
weight=np.array([0.35,0.3,0.25,0.1]) # We set the weight
investment=total*weight # We have the same position.
data=pdr.data.get data yahoo(ticker, start=”2018-01-01”, end=”2020-07-18”)[’Adj Close’]
returns=data.pct change()# percentage returns
cov matrix=returns.cov()
var portfolio=investment.T.dot(cov matrix).dot(investment)# var-cov matrix in dollar term
stdev portfolio=np.sqrt(var portfolio) #volatility in dollar term
var=2.33*stdev portfolio
# An alternative way for the last line
mean portfolio=returns.mean().dot(weight)
mean investment=(1+mean portfolio)*total
from scipy.stats import norm
cutoff=norm.ppf(0.01,mean investment,stdev portfolio)# normality assumption kicks in
var=total-cutoff
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−‘Variance’ of the ‘change in the value of the portfolio’ during ‘1-day period’ is:

σ2
portfolio=0.6082762+0.8958232+0.3766622+2*(-0.09)+2*(-0.0425)+2*(0.321250)=1.692

This means, σportfolio = 1.3007
Then, 1-Day 99% VaR = 2.33*0.220227 = 3.03

− Example 3.3: The variance and covariance matrix of the asset returns is the same as before (pervious
example). Now we show the entire process in Python starting from downloading the asset prices, calculating
corresponding returns and the variance and covariance matrix. Then, obtaining the 1-Day 99% VaR of the
portfolio. The portfolio we used here contains four assets: AAPL; DIS; EBAY; and FB. The stock prices start
from Jan 01 2018 till July 18 2020. Yahoo finance is the data source.

Figure 1: Expected Shortfall

2 Expected Shortfall

Expected Shortfall(ES) is a derivative concept of value at risk, where the VaR value serves as a threshold. ES
is calculated as the average losses exceeded the VaR level. It is also known as the conditional value at risk
(CVaR) since it’s conditional on the VaR value.

Both VaR and ES are risk meaures, so why we need to introduce ES when we already have VaR? The reason
is that ES gives us a more complete picture of the losses (shape of the tail). In other words, expected shortfall
is a more robust risk measure comparing to the VaR.

The underlying loss distribution is important for both VaR and ES measures. Nowadays, most programs can
directly calculate VaR and ES values, but the usefulness of the results depends on what kind of model we use
to fit the sample. For example, if the sample shows a heavy tail feature, but we choose to fit it using a normal
distribution, or the returns are asymmetric, but we choose Student’s t distribution to fit it. The VAR and ES
values in both cases are not reasonable and have no real implication. In addition, it is important to keep in
mind that if we choose to use the historical data to predict future returns. Then, sample selection becomes
extremely important, especially in times of crisis. For example, if we choose a normal period of time as the
sample period, then we are underestimating the risk during the crisis. That is, the values of VaR and ES are
too small. However, if we choose the historical sample from the previous crisis period instead, we will encounter
another problem, that is the sample size. In this case, the VAR and ES values might be imprecise as well.
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