SOA and CAS: Exam P, Probability¹ Chapter 5: Random Variable

Yi Li ²

January 13, 2024

(1) Definition: Random Variable is a "function": "event space" to "real number"

 $P(X_{r.v.})$ refers to the probability of some "event $X_{r.v.}$ "

P(x) stand for the probability of "some random variable = a specific number x"

(2) Random Variable Representation: Capital Letters, such as: X, Y, Z; If $X_{r.v.}$ is an integer, then one can use M or N

(3) "Density Function" versus "Cumulative Probability Function"

(3.1) Definition:

density function (pdf)
$$\begin{cases} Discrete : P(X = x) \\ Continuous : f_X(x) \end{cases}$$

cumulative probability function (cdf)
$$\begin{cases} Discrete: F_X(x) = \sum_{x_i \le x} P(X = x_i) \\ Continuous: F_X(x) = \int_{-\infty}^x f_X(x) dx \end{cases}$$

(3.2) Relationship (continuous case):
$$f_X(x) = \frac{dF_X(x)}{dx}$$

(3.3)

$$P(a < X \le b) = F_X(b) - F_X(a) \begin{cases} Discrete: & \sum_{x_i \le b} P(X = x_i) - \sum_{x_i \le a} P(X = x_i) \\ Continuous: & \int_a^b f_X(x) dx \end{cases}$$

- (4) Examples: Cumulative Probability Function
 - (4.1) Give $F_X(x)$, use $P(a < X \le b) = F_X(b) F_X(a)$ to calculate $P(a < X \le b)$

Example 1 (continuous)

Given
$$F_X(x) = \begin{cases} 0 & (X < 0) \\ \frac{X^2}{4} & (0 \le X \le 2) \\ 1 & (X > 2) \end{cases}$$

Then, $P(1.5 < X \le 2.5) = \underbrace{F(2.5)}_{1} - \underbrace{F(1.5)}_{\frac{1.5^2}{1}} = \frac{7}{16}$

(4.1) Give $f_X(x)$, use $P(a < X \le b) = \int_a^b f(x) \, dx$ to calculate $P(a < X \le b)$

Example 2 (continuous):

 $^{^{1}}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.

²Email: liyifinhub@outlook.com This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

Given $f_X(x) = \begin{cases} \frac{1}{(1+X)^2} & (X \ge 0) \\ 0 & (otherwise) \end{cases}$ Then

$$P(-2 < X \le 5) = \int_0^5 \frac{1}{(1+X)^2} dx$$

= $\int_0^5 (1+X)^{-2} dx$
= $\int_0^5 (-1)d(1+X)^{-1}$
= $(1+X)^{-1}|_0^5$
= $(1+5)^{-1} - (1+0)^{-1}$

(4.3) Give $f_X(x) = cx^2$ (c is unknown), use $P(-\infty < X < \infty) = \int_{-\infty}^{\infty} f_X(x) dx = 1$ to calculate c and $P(a < X \le b)$

Example 3 (continuous):

Given
$$f(x) = \begin{cases} cx^2 & (1 \le X \le 4) \\ 0 & (otherwise) \end{cases}$$

We have $P(-\infty < X < \infty) = \int_1^4 c x^2 dx \Rightarrow c = \frac{1}{21}$

Then

$$P(2 < X \le 3) = \int_{2}^{3} \frac{1}{21} x^{2} dx$$
$$= \int_{2}^{3} \frac{1}{63} dx^{3}$$
$$= \frac{1}{63} x^{3} |_{0}^{5}$$
$$= \frac{1}{63} (5^{3} - 0^{3})$$

(5) Insurance Random Variables:

(5.1) Two types: "Discrete" and "Continuous"

Type I: Discrete $X_{r.v.}$: claim number (over a period/year) \Rightarrow Total size: $X_1 + X_2 + ... + X_n$ Type II: Continuous $X_{r.v.}$: claim size

	(1) Deduction: $Benefit = \begin{cases} 0 & (X_{r.v.} \leq Deduction \ Value(d)) \\ X - d & (X_{r.v.} > Deduction \ Value(d)) \end{cases}$
	$\Rightarrow Benefit = \min(0, X - d)$
	(2) Benefit Limit: $Benefit = \begin{cases} X & (X_{r.v.} \leq benefit \ limit(u)) \\ u & (X_{r.v.} > benefit \ limit(u)) \end{cases}$
	$\Rightarrow Benefit = \max(X, u)$
Type II	(3) Co-insurance & Deduction:
Continuous $X_{r.v.}$	$Benefit = \begin{cases} 0 & (X_{r.v.} \leq Deduction \ Value(d)) \\ c(X-d) & (X_{r.v.} > Deduction \ Value(d)) \end{cases}$
Claim size	$\Rightarrow Benefit = \min(0, c(X - d))$
	(4) Co-insurance & Benefit Limit:
	$Benefit = \begin{cases} cX & (X_{r.v.} \le benefit \ limit(u))\\ cu & (X_{r.v.} > benefit \ limit(u)) \end{cases}$
	$\Rightarrow Benefit = \max(cX, cu)$
	(5) Inflation: Claim size $X_{r.v.}$ has an increasing rate: $(1 + i\%)X$

Note: Deduction case can ignore $X_{r.v.} \leq Deduction \ Value(d)$, since $X_{r.v.} = 0$ Benefit Limit case can NOT ignore $X_{r.v.} > benefit \ limit(u)$, since $X_{r.v.} = u \ NOT \ 0$

(6) Summary:

(6.1) Continuous case :
$$F_X(x) = \int_{-\infty}^x f_X(x) \, dx$$
; $f_X(x) = \frac{dF_X(x)}{dx}$

(6.2) $P(a < X \le b) = F_X(b) - F_X(a)$; If continue $:= \int_a^b f_X(x) dx$ (Use $P(a < X \le b) = F_X(b) - F_X(a)$ when giving $F_X(.)$; Use $P(a < X \le b) = \int_a^b f_X(x) dx$ when giving $f_X(x)$) (6.3) Deduction: Benefit = min(0, X - d)

- (6.4) Benefit Limit: Benefit = $\max(X, u)$
- (6.5) Co-insurance & Deduction: Benefit = $\min(0, c(X d))$
- (6.6) Co-insurance & Benefit Limit: $Benefit = \max(cX, cu)$
- (6.7) After Considering Inflation: Benefit = (1 + i%)X