SOA and CAS: Exam P, Probability ${ }^{1]}$
 Chapter 5: Random Variable

Yi Li ${ }^{2}$
January 13, 2024
(1) Definition: Random Variable is a "funtion": "event space" to "real number"
$P\left(X_{r . v .}\right)$ refers to the probability of some "event $X_{r . v . "}$
$P(x)$ stand for the probability of "some random variable $=$ a specific number x "
(2) Random Variable Representation: Capital Letters, such as: X, Y, Z; If $X_{r . v}$. is an integer, then one can use M or N
(3) "Density Function" versus "Cumulative Probability Function"
(3.1) Definition:

(3.2) Relationship (continuous case): $f_{X}(x)=\frac{d F_{X}(x)}{d x}$

$$
P(a<X \leq b)=F_{X}(b)-F_{X}(a) \begin{cases}\text { Discrete : } & \sum_{x_{i} \leq b} P\left(X=x_{i}\right)-\sum_{x_{i} \leq a} P\left(X=x_{i}\right) \tag{3.3}\\ \text { Continuous }: & \int_{a}^{b} f_{X}(x) d x\end{cases}
$$

(4) Examples: Cumulative Probability Function
(4.1) Give $F_{X}(x)$, use $P(a<X \leq b)=F_{X}(b)-F_{X}(a)$ to calculate $P(a<X \leq b)$

Example 1 (continuous)

$$
\begin{aligned}
& \text { Given } F_{X}(x)=\left\{\begin{array}{cc}
0 & (X<0) \\
\frac{X^{2}}{4} & (0 \leq X \leq 2) \\
1 & (X>2)
\end{array}\right. \\
& \text { Then, } P(1.5<X \leq 2.5)=\underbrace{F(2.5)}_{1}-\underbrace{F(1.5)}_{\frac{1.5^{2}}{4}}=\frac{7}{16}
\end{aligned}
$$

(4.1) Give $f_{X}(x)$, use $P(a<X \leq b)=\int_{a}^{b} f(x) d x$ to calculate $P(a<X \leq b)$

Example 2 (continuous):

[^0]Given $f_{X}(x)=\left\{\begin{array}{c}\frac{1}{(1+X)^{2}}(X \geq 0) \\ 0 \quad \text { (otherwise) })\end{array}\right.$
Then

$$
\begin{aligned}
P(-2<X \leq 5) & =\int_{0}^{5} \frac{1}{(1+X)^{2}} d x \\
& =\int_{0}^{5}(1+X)^{-2} d x \\
& =\int_{0}^{5}(-1) d(1+X)^{-1} \\
& =\left.(1+X)^{-1}\right|_{0} ^{5} \\
& =(1+5)^{-1}-(1+0)^{-1}
\end{aligned}
$$

(4.3) Give $f_{X}(x)=c x^{2}$ (c is unknown), use $P(-\infty<X<\infty)=\int_{-\infty}^{\infty} f_{X}(x) d x=1$ to calculate c and $P(a<X \leq b)$

Example 3 (continuous):
Given $f(x)=\left\{\begin{array}{lr}c x^{2} & (1 \leq X \leq 4) \\ 0 & \text { (otherwise) }\end{array}\right.$
We have $P(-\infty<X<\infty)=\int_{1}^{4} c x^{2} d x \Rightarrow c=\frac{1}{21}$
Then

$$
\begin{aligned}
P(2<X \leq 3) & =\int_{2}^{3} \frac{1}{21} x^{2} d x \\
& =\int_{2}^{3} \frac{1}{63} d x^{3} \\
& =\left.\frac{1}{63} x^{3}\right|_{0} ^{5} \\
& =\frac{1}{63}\left(5^{3}-0^{3}\right)
\end{aligned}
$$

(5) Insurance Random Variables:
(5.1) Two types: "Discrete" and "Continuous"

Type I: Discrete $X_{r, v .}$: claim number (over a period/year) \Rightarrow Total size: $X_{1}+X_{2}+\ldots+X_{n}$ Type II: Continuous $X_{r . v \text { : }}$: claim size

Type II Continuous $X_{r . v}$. Claim size	(1) $\begin{aligned} \hline \hline \text { Deduction: Benefit } & =\left\{\begin{array}{cc} 0 & \left(X_{r . v .} \leq \text { Deduction Value }(d)\right) \\ X-d & \left(X_{r . v .}>\text { Deduction Value }(d)\right) \end{array}\right. \\ \Rightarrow \text { Benefit } & =\min (0, X-d) \end{aligned}$ (2) Benefit Limit: Benefit $=\left\{\begin{array}{cl}X & \left(X_{r . v .} \leq \text { benefit limit }(u)\right) \\ u & \left(X_{r . v .}>\text { benefit limit }(u)\right)\end{array}\right.$ $\Rightarrow \text { Benefit }=\max (X, u)$ (3) Co-insurance \& Deduction: $\begin{aligned} & \text { Benefit }=\left\{\begin{array}{cc} 0 & \left(X_{r . v} \leq \operatorname{Deduction\operatorname {Value}(d))}\right. \\ c(X-d) & \left(X_{r . v}>\operatorname{Deduction\operatorname {Value}(d))}\right. \end{array}\right. \\ & \Rightarrow \text { Benefit }=\min (0, c(X-d)) \end{aligned}$ (4) Co-insurance \& Benefit Limit: $\begin{aligned} & \text { Benefit }= \begin{cases}c X & \left(X_{r . v .} \leq b e n e f i t \operatorname{limit}(u)\right) \\ c u & \left(X_{r . v .}>\text { benefit } \operatorname{limit}(u)\right)\end{cases} \\ & \Rightarrow \text { Benefit }=\max (c X, c u) \end{aligned}$ (5) Inflation: Claim size $X_{r v}$ has an increasing rate: $(1+i \%) X$

Note: Deduction case can ignore $X_{r . v}$. \leq Deduction Value (d), since $X_{r . v .}=0$
Benefit Limit case can NOT ignore $X_{r . v .}>$ benefit limit (u), since $X_{r . v .}=u$ NOT 0
(6) Summary:
(6.1) Continuous case : $F_{X}(x)=\int_{-\infty}^{x} f_{X}(x) d x ; f_{X}(x)=\frac{d F_{X}(x)}{d x}$
(6.2) $P(a<X \leq b)=F_{X}(b)-F_{X}(a) ; \quad$ If continue $:=\int_{a}^{b} f_{X}(x) d x$ (Use $P(a<X \leq b)=F_{X}(b)-F_{X}(a)$ when giving $F_{X}($.$) ; Use P(a<X \leq b)=\int_{a}^{b} f_{X}(x) d x$ when giving $\left.f_{X}(x)\right)$
(6.3) Deduction: Benefit $=\min (0, X-d)$
(6.4) Benefit Limit: Benefit $=\max (X, u)$
(6.5) Co-insurance \mathcal{B} Deduction: Benefit $=\min (0, c(X-d))$
(6.6) Co-insurance $\xi^{\mathcal{G}}$ Benefit Limit: Benefit $=\max (c X, c u)$
(6.7) After Considering Inflation: Benefit $=(1+i \%) X$

[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

