SOA and CAS: Exam P, Probability ${ }^{1}$
 Chapter 4: Bayes' Theorem

Yi Li ${ }^{2}$
January 13, 2024
(1) Recall we have already known that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, where A stands for the initial event, B is the future event. If A is mutually exclusive and exhausitve. Then, we can write $P(B)$ as

$$
P(B)=P\left(B \cap A_{1}\right)+P\left(B \cap A_{2}\right)+\ldots+P\left(B \cap A_{n}\right)
$$

This gives $P(A \mid B)$ (the probability of "initial event A", given "future event B ") is

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{P(A \cap B)}{P\left(B \cap A_{1}\right)+P\left(B \cap A_{2}\right)+\ldots+P\left(B \cap A_{n}\right)} \\
& =\frac{P(B \mid A) * P(A)}{P\left(B \mid A_{1}\right) * P\left(A_{1}\right)+P\left(B \mid A_{2}\right) * P\left(A_{2}\right)+\ldots+P\left(B \mid A_{n}\right) * P\left(A_{n}\right)}
\end{aligned}
$$

Note: "initial event A" should be mutually exclusive and exhausitve
If not, one can always use

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(B \mid A) * P(A)}{P(B)}
$$

to calculate $P(A \mid B)$
(2) Mutually Exclusive and Exhausitve is equivalent to:
(2.a) Mutually Exclusive $\left\{\begin{array}{l}P(A \cup B)=P(A)+P(B) \\ P(A \cap B)=0\end{array}\right.$
(2.b) Mutually Exhausitve $\left\{\begin{array}{l}P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots+P\left(A_{n}\right)=1 \\ A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\Omega\end{array}\right.$

[^0]
[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

