SOA and CAS: Exam P, Probability ${ }^{1}$
 Chapter 24: Order Statistics

Yi Li ${ }^{2}$

January 13, 2024
(1) Maximum

Condition 1: Y is the maximum of a series of X_{i}
Condition 2: X_{i} and X_{j} are independent
If both conditions are met, then

$$
\begin{equation*}
F_{Y}(x)=F_{X_{1}}(x) * F_{X_{2}}(x) \cdots * F_{X_{N}}(x) \tag{1}
\end{equation*}
$$

(Question: Type A) Calculate the probability of the max random variable:
Example A.1:

> A sample consists of $X_{1}, X_{2}, X_{3} ;$
> $X_{1} \sim \operatorname{Uniform}[0,1], X_{2} \sim \operatorname{Uniform}[0,1], X_{3} \sim \operatorname{Uniform}[0,1] ;$
> $Y=\max \left(X_{1}, X_{2}, X_{3}\right) ;$
> Question: what is $\mathrm{P}(\mathrm{Y}>0.7)$?

Recall eq(1), we have $F_{Y}(x)=F_{X_{1}}(x) * F_{X_{2}}(x) * F_{X_{3}}(x)$
That is $P(Y \leq 0.7)=\frac{0.7-0}{1-0} * \frac{0.7-0}{1-0} * \frac{0.7-0}{1-0}=\left(\frac{0.7-0}{1-0}\right)^{3}$, which gives $P(Y>0.7)=1-P(Y \leq 0.7)$
Example A.2:

> A sample consists of X_{1}, X_{2}, X_{3}
> $X_{i}: f(x)=\frac{10}{x^{2}}(X>10)$
> $Y=\max \left(X_{1}, X_{2}, X_{3}\right)$
> Question: what is $\mathrm{P}(\mathrm{Y} \leq 25)) ?$

From eq(1), we know that $P(Y \leq 25)=[P(X \leq 25)]^{3}$, where $P(X \leq 25)=\int_{10}^{25} f(x) d x=\int_{10}^{25} \frac{10}{x^{2}} d x$
(Question: Type B) Calculate the Expectation of the max random variable:
Step 1: get $F_{X}(x)$
Step 2: get $F_{Y}(x)$
Step 3: get $f_{Y}(x)$
Step 4: get $E(Y)$
Example B.1:

> A sample consists of 4 claims, each claim $X_{i} \sim f(x)=\frac{2}{x^{3}}(x>1)$
> $Y=\max \left(X_{1}, X_{2}, X_{3}, X_{4}\right)$
> Question: what is $\mathrm{E}(\mathrm{Y})$?

Step 1: get $F_{X}(x)=\int_{1}^{x} \frac{2}{x^{2}} d x=1-\frac{1}{x^{2}}(x>1)$
Step 2: get $F_{Y}(x)=\left(1-\frac{1}{x^{2}}\right)^{4}$
Step 3: get $f_{Y}(x)=4 *\left(1-\frac{1}{x^{2}}\right)^{3} * \frac{2}{x^{2}}=8 *\left(\frac{1}{x^{3}}-\frac{3}{x^{5}}+\frac{3}{x^{7}}-\frac{1}{x^{9}}\right)$
Step 4: get $E(Y)=\int_{1}^{\infty} x * 8 *\left(\frac{1}{x^{3}}-\frac{3}{x^{5}}+\frac{3}{x^{7}}-\frac{1}{x^{9}}\right) d x=3.6571$

[^0](2) Minimum

Condition 1: Y is the minimum of a series of X_{i}
Condition 2: X_{i} and X_{j} are independent
If both conditions are met, then $F_{Y}(x)=1-\left[1-F_{X}(x)\right]^{n}$

$$
\begin{align*}
F_{Y}(x) & =1-\left[1-F_{X}(x)\right]^{n} \tag{2}\\
f_{Y}(x) & =n *\left[1-F_{X}(x)\right]^{n-1} * f_{X}(x)
\end{align*}
$$

(3) Exponential

Example 3.1

Y is the minimum of a series of X_{i} (total of $\left.n X_{i}:\left(X_{1}, \ldots X_{i}, \ldots X_{n}\right)\right)$
$X_{i} \sim \operatorname{Exp}(\theta)$
Question: what is the distribution of Y ?
Trick: $Y=\min \left(X_{1}, \ldots X_{i}, \ldots X_{n}\right) \sim \operatorname{Exp}\left(\frac{\theta}{n}\right)$
Example $3.2\left(K^{\text {th }} X_{i}\right)$
$Y: \mathrm{K}^{\text {th }} \mathrm{X}_{i}$, (total of $n X_{i}$)
Question: what is $\mathrm{E}(Y)$?
Trick: $E(Y)=\frac{k * \theta}{n+1}$,where $X_{i} \sim \operatorname{Exp}(\theta)$

[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

