SOA and CAS: Exam P, Probability¹ Chapter 24: Order Statistics

Yi Li $^{\rm 2}$

January 13, 2024

(1) Maximum

Condition 1: Y is the maximum of a series of X_i

Condition 2: X_i and X_j are independent

If both conditions are met, then

$$F_Y(x) = F_{X_1}(x) * F_{X_2}(x) \cdots * F_{X_N}(x)$$
(1)

(Question: Type A) Calculate the *probability* of the max random variable:

Example A.1:

A sample consists of X_1 , X_2 , X_3 ; $X_1 \sim Uniform[0, 1]$, $X_2 \sim Uniform[0, 1]$, $X_3 \sim Uniform[0, 1]$; $Y = max(X_1, X_2, X_3)$; Question: what is P(Y>0.7)?

Recall eq(1), we have $F_Y(x) = F_{X_1}(x) * F_{X_2}(x) * F_{X_3}(x)$

That is $P(Y \le 0.7) = \frac{0.7 - 0}{1 - 0} * \frac{0.7 - 0}{1 - 0} * \frac{0.7 - 0}{1 - 0} = (\frac{0.7 - 0}{1 - 0})^3$, which gives $P(Y > 0.7) = 1 - P(Y \le 0.7)$

Example A.2:

A sample consists of X_1, X_2, X_3 $X_i: f(x) = \frac{10}{x^2} (X > 10)$ $Y = max(X_1, X_2, X_3)$ Question: what is P(Y ≤ 25))?

From eq(1), we know that $P(Y \le 25) = [P(X \le 25)]^3$, where $P(X \le 25) = \int_{10}^{25} f(x) \, dx = \int_{10}^{25} \frac{10}{x^2} \, dx$

(Question: Type B) Calculate the *Expectation* of the max random variable:

Step 1: get $F_X(x)$ Step 2: get $F_Y(x)$ Step 3: get $f_Y(x)$ Step 4: get E(Y)

Example B.1:

A sample consists of 4 claims, each claim $X_i \sim f(x) = \frac{2}{x^3}$ (x > 1) $Y = max(X_1, X_2, X_3, X_4)$ Question: what is E(Y)?

 $\begin{array}{l} Step \ 1: \ \text{get} \ F_X(x) = \int_1^x \frac{2}{x^2} dx = 1 - \frac{1}{x^2} \ (x > 1) \\ Step \ 2: \ \text{get} \ F_Y(x) = (1 - \frac{1}{x^2})^4 \\ Step \ 3: \ \text{get} \ f_Y(x) = 4 * (1 - \frac{1}{x^2})^3 * \frac{2}{x^2} = 8 * (\frac{1}{x^3} - \frac{3}{x^5} + \frac{3}{x^7} - \frac{1}{x^9}) \\ Step \ 4: \ \text{get} \ E(Y) = \int_1^\infty x * 8 * (\frac{1}{x^3} - \frac{3}{x^5} + \frac{3}{x^7} - \frac{1}{x^9}) dx = 3.6571 \end{array}$

 $^{^{1}}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.

 $^{^{2}}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

(2) Minimum

Condition 1: Y is the minimum of a series of X_i

Condition 2: X_i and X_j are independent

If both conditions are met, then $F_Y(x) = 1 - [1 - F_X(x)]^n$

$$F_Y(x) = 1 - [1 - F_X(x)]^n$$

$$f_Y(x) = n * [1 - F_X(x)]^{n-1} * f_X(x)$$
(2)

(3) Exponential

Example 3.1

Y is the minimum of a series of X_i (total of $n X_i : (X_1, ...X_i, ...X_n)$) $X_i \sim Exp(\theta)$ Question: what is the distribution of Y?

Trick: $Y = \min(X_1, ...X_i, ...X_n) \sim Exp(\frac{\theta}{n})$

Example 3.2 $(K^{th} X_i)$

Y: $\mathbf{K}^{th} \mathbf{X}_i$, (total of $n \mathbf{X}_i$) Question: what is $\mathbf{E}(Y)$?

Trick: $E(Y) = \frac{k * \theta}{n+1}$, where $X_i \sim Exp(\theta)$