SOA and CAS: Exam P, Probability ${ }^{1 /}$
 Chapter 23: Central Limit Theorem

Yi Li ${ }^{2}$
January 13, 2024
(1) Definition: If (i) $X_{i} \sim$ some distribution with mean $=\mu$, variance $=\sigma^{2}$
(ii) X_{i} and X_{j} are independent

Then, $\operatorname{sum}\left(X_{i}\right)=X_{1}+X_{2} \ldots+X_{n} \sim N\left(n \mu, n \sigma^{2}\right)$
(2) Probability:

Example (2.1): $10 X_{i}$ and $X_{i} \sim \operatorname{Uniform}(0,12)$
Then, $\operatorname{sum}\left(X_{i}\right)=X_{1}+X_{2}+\ldots+X_{10} \sim N\left(10 * \frac{0+12}{2}, 10 * \frac{(12-0)^{2}}{12}\right)$
Example (2.2): $5 X_{i}$ and $X_{i} \sim$ Exponential $(\theta=$ mean $=2)$
Then, $\operatorname{sum}\left(X_{i}\right)=X_{1}+X_{2} \ldots+X_{5} \sim N\left(5 * \theta, 5 * \theta^{2}\right)$
Example (2.3): Let X_{i} stands for "the number of car" in "one day" $\sim \operatorname{Poisson}(\lambda=5)$
Then, Y "the number of car" in "100 day" follows

$$
Y=\operatorname{sum}\left(X_{i}\right)=X_{1}+X_{2} \ldots+X_{100} \sim N(100 * 5,100 * 5)
$$

Thus, $\operatorname{Probability}(Y \geq 1050)=1-P(Y \leq 1050)$ where

$$
P(Y \leq 1050)=P(\underbrace{\frac{Y-100 * 5}{\sqrt{100 * 5}}}_{Z} \leq \frac{1050-100 * 5}{\sqrt{100 * 5}})=\Phi\left(\frac{1050-100 * 5}{\sqrt{100 * 5}}\right)=0.92
$$

Example (2.4): (i) A line, 50 person in front of you
(ii) each person needs X minutes: $X_{i} \sim \operatorname{Exponential}(\theta=1)(x>0)$

Question: What is P (waiting time more than 60 minutes)?
Solve: P (waiting time more than 60 minutes $) \Longleftrightarrow P\left(X_{1}+X_{2} \ldots+X_{50}>60\right)$ If the total waiting time is Y, then we have $Y=\operatorname{sum}\left(X_{i}\right)=X_{1}+X_{2} \ldots+X_{50} \sim N\left(50 * \theta, 50 * \theta^{2}\right)$, which implies

$$
\begin{aligned}
& P(Y>60)=1-P(Y \leq 60) \\
& \text { where } P(Y \leq 60)=P(\underbrace{\frac{Y-50 * 1}{\sqrt{50 * 1^{2}}}}_{Z} \leq \frac{60-50 * 1}{\sqrt{50 * 1^{2}}})=\Phi\left(\frac{60-50 * 1}{\sqrt{50 * 1^{2}}}\right)=0.92
\end{aligned}
$$

(3) Percentile: $X_{p}=\mu+\sigma Z_{p}$

For example: (i) $X_{i} \sim \operatorname{Uniform}\left(10^{5}, 10^{6}\right)$
(ii) Y is the sum of $X_{i}: Y=X_{1}+X_{2} \ldots+X_{50}$, that is

$$
Y \sim N\left(50 * \frac{10^{5}+10^{6}}{2}, 50 * \frac{\left(10^{6}-10^{5}\right)^{2}}{12}\right)
$$

Question: What is $75^{t h}$ of Y ?
Solve:

$$
\begin{aligned}
75^{t h} \text { of } \mathrm{Y} & =\mu+\sigma * \underbrace{Z_{p}^{75^{t h}}}_{0.68} \\
\text { where } \mu & =50 * \frac{10^{5}+10^{6}}{12} \\
\sigma & =\sqrt{50 * \frac{\left(10^{6}-10^{5}\right)^{2}}{12}}
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

