SOA and CAS: Exam P, Probability ${ }^{1}$ Chapter 22: Normal Distribution (Continuous)

Yi Li ${ }^{2}$

January 13, 2024
(1) Definition: $X \sim N\left(\mu, \sigma^{2}\right)$, where μ and σ^{2} stand for the mean and variance.

	Probability Distribution Function	Mean	Variance	$2^{\text {nd }}$ Raw Moment
Normal Distribution	$f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad(-\infty<x<\infty)$	μ	σ	-
Standard Normal Distribution	$f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \quad(-\infty<x<\infty)$	0	1	-
Lognormal Distribution $\ln X \sim N\left(\mu, \sigma^{2}\right)$	$\ln X \sim N\left(\mu, \sigma^{2}\right)$	$e^{\mu+\frac{\sigma^{2}}{2}}$	-	$e^{2 \mu+2 \sigma^{2}}$

(1.1) If $X \sim N\left(\mu, \sigma^{2}\right)$, then $a X+b \sim \operatorname{Normal}\left(a \mu+b, a^{2} \sigma^{2}\right)$

Proof: $E(a X+b)=a E(X)+b=a * \mu+b$

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)=a^{2} \sigma^{2}
$$

(1.2) If X_{1} and X_{2} are independent, then $a X_{1}+b X_{2}+c \sim N\left(a \mu_{1}+b \mu_{2}+c, a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}\right)$

Proof: $E\left(a X_{1}+b X_{2}+c\right)=a E\left(X_{1}\right)+b E\left(X_{2}\right)+c=a \mu_{1}+b \mu_{2}+c$

$$
\begin{gathered}
\operatorname{Var}\left(a X_{1}+b X_{2}+c\right)=\operatorname{Var}\left(a X_{1}+b X_{2}\right) \stackrel{\text { independent }}{=} a^{2} \operatorname{Var}\left(X_{1}\right)+b^{2} \operatorname{Var}\left(X_{2}\right) \\
=a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}
\end{gathered}
$$

(2) Two Types of Exam Questions: Cumulative Probability and Quantile
(2.a) Cumulative Probability

For example: $X \sim N\left(\mu=5, \sigma^{2}=4^{2}\right)$
Question: What is $Q(X>7)$?
Solve: $Q(X>7)=1-Q(X \leq 7)=1-Q(\underbrace{\frac{X-5}{4}}_{Z} \leq \underbrace{\frac{7-5}{4}}_{\text {check table }})$

$$
=1-Q_{Z}(0.5)
$$

(2.b) Quantile

For example: $X \sim N\left(\mu=10, \sigma^{2}=5^{2}\right)$
Question: What is the $67^{\text {th }}$ percentile of X ?
Solve: $67^{\text {th }}$ percentile of $X=67^{\text {th }}$ percentile of Z. After checking the table, we have $Z_{P}^{67 \text { th }}=0.44$ Then, use $Z_{P}^{67 t h}=\frac{X_{P}^{67 t h}-10}{5}$ to get $X_{P}^{67 \text { th }}=12.2$
Recall, $X_{p}=\mu+\sigma Z_{p}, X$ and Z have the same quantile

[^0](3) Independent

If (i) $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \quad X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$
(ii) X_{1} and X_{2} are independent

Then: $X_{1}+X_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right), \quad a X_{1}+b X_{2}+c \sim N\left(a \mu_{1}+b \mu_{2}+c, a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}\right)$
For example: $X_{1} \sim N\left(80,(\sqrt{30})^{2}\right), X_{2} \sim N\left(20,(\sqrt{10})^{2}\right), X_{1}$ and X_{2} are independent
Question: $P\left(X_{1}+X_{2} \leq 90\right)=$?
Solve: $X_{1}+X_{2} \sim N(\underbrace{80+20}_{\mu}, \underbrace{30+10}_{\sigma^{2}})$

$$
\text { Thus, } \begin{aligned}
P\left(X_{1}+X_{2} \leq 90\right) & =P(\underbrace{\frac{\left(X_{1}+X_{2}\right)-(80+20)}{\sqrt{30+10}}}_{Z} \leq \frac{90-(80+20)}{\sqrt{30+10}}) \\
& =P(Z \leq \underbrace{-1.581}_{\text {negative cannot check table }}) \\
& \begin{aligned}
\text { symmetric } & P(Z>1.581) \\
& =1-P(Z \leq 1.581) \\
& =1-0.9430=0.0570 \\
& =0.0570
\end{aligned}
\end{aligned}
$$

(4) Log-Normal: X is log-normal $\Longleftrightarrow \ln X \sim N\left(\mu, \sigma^{2}\right)$

For example: Loss follows a log-normal, $\ln X \sim N\left(\mu=8, \sigma^{2}=2^{2}\right)$
Question: $P($ loss $\leq 10000)=$?
Solve: $P($ loss $\leq 10000)=P(\ln ($ loss $) \leq \ln (10000))=P(\underbrace{\frac{\ln (\text { loss })-\mu}{\sigma}}_{Z} \leq \underbrace{\frac{\ln (10000)-\mu}{\sigma}}_{0.605})$

[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

