SOA and CAS: Exam P, Probability¹ Chapter 22: Normal Distribution (Continuous)

Yi Li ² January 13, 2024

(1) Definition: $X \sim N(\mu, \sigma^2)$, where μ and σ^2 stand for the mean and variance.

	Probability Distribution Function	Mean	Variance	2^{nd} Raw Moment
Normal Distribution	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} (-\infty < x < \infty)$	μ	σ	-
Standard Normal Distribution	$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} (-\infty < x < \infty)$	0	1	-
$\begin{tabular}{ c c } \hline Lognormal Distribution \\ \ln X \sim N \ (\mu, \ \sigma^2) \end{tabular}$	$\ln X ~\sim~ N~(\mu,~\sigma^2)$	$e^{\mu + \frac{\sigma^2}{2}}$	-	$e^{2\mu+2\sigma^2}$

(1.1) If $X \sim N(\mu, \sigma^2)$, then $aX + b \sim Normal(a\mu + b, a^2\sigma^2)$

Proof: $E(aX + b) = aE(X) + b = a * \mu + b$

$$Var(aX+b) = a^2 Var(X) = a^2 \sigma^2$$

(1.2) If X_1 and X_2 are independent, then $aX_1 + bX_2 + c \sim N(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$

Proof:
$$E(aX_1 + bX_2 + c) = aE(X_1) + bE(X_2) + c = a\mu_1 + b\mu_2 + c$$

 $Var(aX_1 + bX_2 + c) = Var(aX_1 + bX_2) \stackrel{independent}{=} a^2Var(X_1) + b^2Var(X_2)$
 $= a^2\sigma_1^2 + b^2\sigma_2^2$

(2) Two Types of Exam Questions: Cumulative Probability and Quantile

(2.a) Cumulative Probability
For example:
$$X \sim N(\mu = 5, \sigma^2 = 4^2)$$

Question: What is $Q(X > 7)$?
Solve: $Q(X > 7) = 1 - Q(X \le 7) = 1 - Q(\underbrace{\frac{X-5}{4}}_{Z} \le \underbrace{\frac{7-5}{4}}_{check\ table})$
 $= 1 - Q_Z(0.5)$

(2.b) Quantile

For example: $X \sim N(\mu = 10, \sigma^2 = 5^2)$ Question: What is the 67th percentile of X?

Solve: 67^{th} percentile of $X = 67^{th}$ percentile of Z. After checking the table, we have $Z_P^{67th} = 0.44$ Then, use $Z_P^{67th} = \frac{X_P^{67th} - 10}{5}$ to get $X_P^{67th} = 12.2$ Recall, $X_p = \mu + \sigma Z_p$, X and Z have the same quantile

 $^{^{1}}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.

²Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

(3) Independent

 $\begin{array}{ll} \text{If (i)} \ X_1 \sim N(\mu_1, \, \sigma_1^2), \ X_2 \sim N(\mu_2, \, \sigma_2^2) \\ \text{(ii)} \ X_1 \ \text{and} \ X_2 \ \text{are independent} \\ \text{Then:} \ X_1 + X_2 \sim N(\mu_1 + \mu_2, \, \sigma_1^2 + \sigma_2^2), \ \ aX_1 + bX_2 + c \sim N(a\mu_1 + b\mu_2 + c, \, a^2\sigma_1^2 + b^2\sigma_2^2) \\ \end{array}$

For example: $X_1 \sim N(80, (\sqrt{30})^2), X_2 \sim N(20, (\sqrt{10})^2), X_1$ and X_2 are independent

Question:
$$P(X_1 + X_2 \le 90) = ?$$

Solve:
$$X_1 + X_2 \sim N(\underbrace{80 + 20}_{\mu}, \underbrace{30 + 10}_{\sigma^2})$$

Thus, $P(X_1 + X_2 \le 90) = P(\underbrace{(X_1 + X_2) - (80 + 20)}_{\sqrt{30 + 10}} \le \frac{90 - (80 + 20)}{\sqrt{30 + 10}})$
 $= P(Z \le \underbrace{-1.581}_{\text{negative cannot check table}})$
negative cannot check table
 $symmetric P(Z > 1.581)$
 $= 1 - P(Z \le 1.581)$
 $= 1 - 0.9430 = 0.0570$
 $= 0.0570$

(4) Log-Normal: X is log-normal $\iff lnX \sim N(\mu, \sigma^2)$

For example: Loss follows a log-normal, $lnX \sim N(\mu = 8, \sigma^2 = 2^2)$

 $\Phi(0.605)$

Question: $P(loss \le 10000) = ?$

Solve:
$$P(loss \le 10000) = P(\ln(loss) \le \ln(10000)) = P(\underbrace{\frac{\ln(loss) - \mu}{\sigma}}_{Z} \le \underbrace{\frac{\ln(10000) - \mu}{\sigma}}_{0.605})$$