SOA and CAS: Exam P, Probability ${ }^{1 /}$ Chapter 20: Poisson Distribution (Discrete)

Yi Li ${ }^{2}$

January 13, 2024
(1) Definition:
$\operatorname{Pr}(N=k)$ stands for "within one unit time", probability of "the number of occurrence $=\mathrm{k}$ "

$$
\begin{aligned}
\operatorname{Pr}(N & =k)=e^{-\lambda} \frac{\lambda^{n}}{n!} \quad(n=0,1,2, \ldots) \\
E(N) & =\lambda \\
\operatorname{Var}(N) & =\lambda \\
E\left(N^{2}\right) & =\lambda+\lambda^{2}=\operatorname{Var}(N)+[E(N)]^{2}
\end{aligned}
$$

For example:
(i) the probability of ("in one week", happens " $\underbrace{\text { exactly } 10 \text { rainstorms") }}_{n=10}$
(ii) the probability of ("in a minute", arriving " $\underbrace{\text { exactly } 3 \text { cars }}_{n=3}$ ")
(iii) the probability of ("in one year", happens " $\underbrace{\text { exactly } 5 \text { snowtorms" ") }}_{n=5}$
(iv) the probability of ("in one year", arriving $\leq " 2$ cars" $)=\operatorname{Pr}(N=0)+\operatorname{Pr}(N=1)+\operatorname{Pr}(N=2)$)
(2) Independent:

Give : N_{1}, N_{2}, and N_{3} are mutually indepedent
$N_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right), N_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right), N_{3} \sim \operatorname{Poisson}\left(\lambda_{3}\right)$
Then, $N_{1}+N_{2}+N_{3} \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)$
(3) Changing λ :
(3.a) 1 unit time $\Longrightarrow m$ unit time:

For example: the probability of ("in one week", happens " $\underbrace{\text { exactly } 10 \text { rainstorm }}_{n=10}$ ") is

$$
\operatorname{Pr}(N=10)=e^{-\lambda} \frac{\lambda^{n}}{n!} \quad(n=10, \lambda)
$$

the probability of (" $\underbrace{i n 3 \text { week }}_{3 \lambda}$ ", happens " $\underbrace{\text { exactly } 10 \text { rainstorm }}_{n=10}$ ") is

$$
\operatorname{Pr}(N=10)=e^{-(3 \lambda)} \frac{(3 \lambda)^{n}}{n!} \quad(n=10,3 \lambda)
$$

(3.b) car \Longrightarrow white car:

For example: (i) the probability of ("in one week", arrives " $\underbrace{\text { exactly } 10 \text { car }}_{n=10}$ ")

$$
\operatorname{Pr}(N=10)=e^{-\lambda} \frac{\lambda^{n}}{n!} \quad(n=10)
$$

[^0](ii) the probability of ("in one week", arrives "exactly 10 white car", $\underbrace{p(\text { white })=0.2}_{n=10}$)
$$
\operatorname{Pr}(N=10)=e^{-(0.2 \lambda)} \frac{(0.2 \lambda)^{n}}{n!} \quad(n=10,0.2 \lambda)
$$
(iii) the probability of ("in 3 week", arrives "exactly 10 white car", $p($ white $)=0.2$)
$$
\operatorname{Pr}(N=10)=e^{-(0.2 * 3 \lambda)} \frac{(0.2 * 3 \lambda)^{n}}{n!} \quad(n=10,0.2 * 3 \lambda)
$$
(iv) the probability of ($\underbrace{\text { }}_{\left.0.2 * 3 * \lambda, \quad{ }_{n=10}^{i n} 3 \text { week", arrives " } 2 \text { white car", p(white }\right)=0.2})$
$$
\operatorname{Pr}(N=0)+\operatorname{Pr}(N=1)+\operatorname{Pr}(N=2) \quad \text { with } 0.2 * 3 * \lambda
$$

(4) Conditional Probability:

Definition: Probability of "within one unit time", the "number of occurrence is $\underbrace{n}_{N=n}$ ", given $\mathrm{N}>1$

$$
\begin{aligned}
P(N & =n \mid N>1) \\
& =\frac{P(N=n \cap N>1)}{P(N>1)} \\
& =\frac{P(N=n)}{P(N>1)} \\
& =\frac{P(N=n)}{1-P(N \leq 1)} \\
& =\frac{P(N=n)}{1-[P(N=0)+P(N=1)]} \\
\text { where } P(N & =0)=e^{-\lambda} \frac{\lambda^{n=0}}{(n=0)!} \\
P(N & =1)=e^{-\lambda} \frac{\lambda^{n=1}}{(n=1)!} \\
P(N & =n)=e^{-\lambda} \frac{\lambda^{n}}{(n)!}
\end{aligned}
$$

[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

