SOA and CAS: Exam P, Probability ${ }^{1}$ Chapter 18 and 19: Binomial and Negative Binominal Distributions

Yi Li ${ }^{2}$

January 13, 2024

Chapter 18: Binomial Distribution: Single Variable
 Chapter 19: Negative Binominal Distribution: Single Variable

(1) Chapter 18: Binomial Distribution: Discrete Single Variable

(1.1) Binomial Distribution

Definition: $P(N=k)$ stands for the probability of "number of successful trails $=\mathrm{k}$ "
Example (1.1.a): An urn contains red and blue balls. $P(r e d)=p$ and $P(b l u e)=1-p$. Now, draw a ball from this urn, observe the color, put it back (draw with repalcement). Then, draw another ball, observe the color, put it back. Repeat this process n times. Then, $P(N=k)$ stands for P (out of n draws, the "number of red" $=\mathrm{k})$. Note that we actually have n Bernoulli trails. Each trail has two outcomes: red ball or blue ball with $P($ red $)=p$ and $P($ blue $)=1-p$.

Formula:

$$
\begin{equation*}
\operatorname{Pr}(N=k)=C_{n}^{k} * p^{k} *(1-p)^{n-k} \tag{1}
\end{equation*}
$$

where n : number of Bernoulli trails. Each Bernoulli trail has two outcomes, such as: success or fail, red or blue. $P($ success $/$ red $)=p$ and $P($ fail $/$ blue $)=1-p$

Example (1.1.b): 1000 machines, 15 are defective. Draw 20 times repeatedly.
Question: What is $\mathrm{P}(\mathrm{k} \leq 2)$?
Solve: $\mathrm{P}(\mathrm{k} \leq 2)=(\underbrace{k=0}_{\text {\#defective is } 0})+(\underbrace{k=1}_{\text {\#defective is } 1})+(\underbrace{k=2}_{\text {\#defective is } 2})$

$$
=C_{20}^{0} * p^{0} *(1-p)^{20-0}+C_{20}^{1} * p^{1} *(1-p)^{20-1}+C_{20}^{2} * p^{2} *(1-p)^{20-2}
$$

$$
\text { where } p=\frac{15}{1000}
$$

(1.2) Hypergeometric Distribution

Definition: $P(N=k)$ stands for the probability of "number of successful trails $=\mathrm{k}$ ". Recall that the process in the binomial distribution is "draw with replacement". Here, the process is "draw without replacement".

Example (1.2.a): A set contains N samples, D defective. Now, draw one, draw another one, draw the third one (draw without replacement)..., draw n times in total.

Question: What is $\mathrm{P}(\mathrm{d}$ defective in n samples $)$?
Solve: $P(d$ defective $)=\frac{A}{B}=\frac{C_{D}^{d} C_{N-D}^{n-d}}{C_{N}^{n}}=\frac{\text { "draw d from } D \text { defective" * "rest }(n-d) \text { draw from the rest }(N-D) "}{\text { "draw n from } N "}$
Example (1.2.b): 1000 machines, 15 are defective. Draw 20 times without repalcement.
Question: What is $\mathrm{P}(\mathrm{k} \leq 2)$?
By definition: we know the process is Hypergeometric (n, p).

[^0]\[

Solve: $$
\begin{aligned}
\mathrm{P}(\mathrm{k} \leq 2) & =(\underbrace{k=0}_{\text {\#defective is } 0})+(\underbrace{k=1}_{\text {\#defective is } 1})+(\underbrace{k=2}_{\text {\#defective is } 2}) \\
& =\frac{C_{15}^{0} * C_{1000-15}^{20-0}}{C_{1000}^{20}}+\frac{C_{15}^{1} * C_{1000-15}^{20-1}}{C_{1000}^{20}}+\frac{C_{15}^{2} * C_{100-15}^{20-2}}{C_{1000}^{20}}
\end{aligned}
$$
\]

(1.3) Trinominal Distribution

For example: one urn contains three different classes of balls. First class has a same balls. Second class has b same balls. Third class has c same balls. $P($ draw one $a)=0.6, P($ draw one $b)=0.3, P(d r a w$ one $c)=0.1$. Then, $\mathrm{P}($ draw 3 first class, 2 second class, 1 third class $)=\frac{6!}{3!2!1!}(0.6)^{3}(0.2)^{2}(0.1)^{1}$

(1.4) Summary

	Bernoulli	Binomial	Hypergeometric
Mean	p	np	$\frac{n D}{N}$
Variance	$1-\mathrm{p}$	$\mathrm{np}{ }^{*}(1-\mathrm{p})$	$\frac{n D}{N} * \frac{N-D}{N} * \frac{N-n}{N-1}$

(2) Chapter 19: Negative Binominal Distribution: Single Variable

(2.1) Negative Binominal Distribution

Definition: (i) a total of ($\mathrm{n}+\mathrm{k}$) trails, the very last trail is "a successful trail". In the previous ($\mathrm{n}+\mathrm{k}-1$) trails, there are n unsuccessful trails; (ii) Each trail can only have 2 outcomes: successful trail or unsuccessful trail. $\mathrm{P}($ successful $)=p$ and $\mathrm{P}($ unsuccessful $)=1-p$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~N}=\mathrm{k}) & =\underbrace{C_{n+k-1}^{n}(1-p)^{n}(p)^{k-1}}_{n+(k-1) \text { has } n \text { unsuccessful trails, } k-1}{ }_{\text {successful trails }}^{*}{ }_{\text {last one is a successful trail }}^{p} \\
& =C_{n+k-1}^{n}(1-p)^{n}(p)^{k}
\end{aligned}
$$

Example (2.1.a): Give $P($ win $)=0.6$
Question: $\mathrm{P}\left(4^{\text {th }}\right.$ game win, occurs before, $3^{\text {rd }}$ lose $)$?
Solve: we know that the last trail (in the total 7 trails) must be a lose trail. Then, in order to have the $4^{\text {th }}$ win before the $3^{r d}$ lose, the previous ($4+2$) trails should have at least 4 wins.

$$
\begin{aligned}
\text { Probability } & =P(N=4)+P(N=5)+P(N=6) \\
\text { where } P(N=4) & =C_{6}^{4}(p)^{4}(1-p)^{2} \\
P(N=5) & =C_{6}^{5}(p)^{5}(1-p)^{1} \\
P(N=6) & =C_{6}^{6}(p)^{6}(1-p)^{0} \\
p & =0.6
\end{aligned}
$$

Example (2.1.b): Give $P($ win $)=0.6$
Question: $\mathrm{P}\left(6^{\text {th }}\right.$ game is win, which is also the $4^{\text {th }}$ win $)$?
Solve: we know that the last trail (in the total 6 trails) must be a win trail. Then, in order to make the $4^{\text {th }}$ win happens at the 6th trail, the previous 5 trails should have 3 wins and 2 loses.

$$
\begin{aligned}
\text { Probability } & =P(N=2)=P(2 \text { loses }) \\
& =\underbrace{C_{5}^{2}(1-p)^{2}(p)^{3}}_{\text {total } 5 \text { trails, } 2 \text { unsuccessful and } 3 \text { successful }} \quad *
\end{aligned} \underbrace{p}_{\text {last one is a successful trail }}
$$

where $p=0.6$

(2.2) Geometric Distribution

Definition: (i) a total of ($\mathrm{n}+1$) trails, the very last trail is "a successful trail". The previous n trails are all unsuccessful trails; (ii) Each trail can only have 2 outcomes: successful and unsuccessful. $\mathrm{P}($ successful $)=p$ and $\mathrm{P}($ unsuccessful $)=1-p$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~N}=\mathrm{k}) & =\underbrace{(1-p)^{n}}_{n \text { trails are all unsuccessful trails }} *{ }_{\text {last one is the only successful trail }}^{p} \\
& =(1-p)^{n} p
\end{aligned}
$$

where $\mathrm{n}=0,1,2, \ldots$
$\left.\begin{array}{|c|c|c|}\hline \hline & \text { Negative Binominal } & \text { Special case: }(\mathrm{k}=1: \text { last trail is the only success trail) }\end{array}\right] \frac{1}{p}(1-p)$

Example (2.2): With replacement: A shipment contains 20 packages, 7 are damaged. Randomly draw without replacement until the $4^{\text {th }}$ damaged package is discovered.

Question: What is the P (exactly 12 packages are inspected)?
Solve: we know that the $12^{\text {th }}$ package must be a damaged one. Thus, the previous 11 packages must contains 3 damage packages. (i) the previous 11 inspected packages: 3 damaged packages should be drawn from the total 7 damaged packages, while 8 packages should be drawn from the total 13 undamaged packages. That is $\frac{A}{B}=$ $\frac{C_{7}^{3} C_{13}^{8}}{C_{20}^{11}}=0.26$; (ii) the last $12^{\text {th }}$ damaged package should be drawn from the total 4 remaining damaged packages. That is $\frac{C}{D}=\frac{C_{4}^{1}}{\underbrace{1}}=\frac{4}{9}$. Overall, $\mathrm{P}($ exactly 12 packages are inspected $)=\frac{A}{B} * \frac{C}{D}=0.26 * \frac{4}{9}=0.12$

[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

