SOA and CAS: Exam P, Probability¹ Chapter 16 and 26: Uniform Distribution

Yi Li ² January 13, 2024

Chapter 16: Uniform Distribution: Single Variable Chapter 26: Joint Uniform Distribution

(1) Single Variable: Continuous, Conditional, Distrete, and Generalized Versions

(1.a) Continuous

Definition: probability density $f(x) = \frac{1}{b-a}$ $(a \le x \le b)$

cumulative distribution $F_X(x) = \begin{cases} 0 & (x < a) \\ \frac{x-a}{b-a} & (a \le x \le b) \\ 1 & (x > b) \end{cases}$

mean and variance
$$E(X) = \frac{a+b}{2}$$
; $Var(X) = \frac{(b-b)}{2}$

For example: give $X \sim Uniform[0, 1000]$ with "policy limit 600" Question: What is the "Average Benefit"?

Solve: Average benefit E(X) = Expected Value over [0, 600] + Expected Value over (600, 1000]

part 2

$$= 60\% * \frac{600-0}{2} + 40\% * 600 = 420$$

Alternative Method:
$$E(X) = \int_{0}^{600} x * \underbrace{f(x)}_{\frac{1}{1000-0}} dx + \int_{0}^{1000} 600 * \underbrace{f(x)}_{\frac{1}{1000-0}} dx = 420$$

(1.b) Conditional

$$\begin{array}{l} \textit{Porperty: Let } X \sim \textit{Uniform } (a \leq x \leq c), \text{ some } \mathbf{b} > \mathbf{a} \\ \text{Then, } X | X > b \sim \textit{Uniform } (b < x \leq c) \\ X | X \leq b \sim \textit{Uniform } (a \leq x \leq b) \end{array}$$

For example:

- (i) Let X be the loss amount
- (ii) If the accident is *minor*, then X follows a Uniform[0, b] $\iff X | minor \sim Uniform[0, b]$
- (iii) If the accident is major, then X follows a Uniform[b, 3b] $\iff X | major \sim Uniform[b, 3b]$
- (v) P(a minor accident)=0.75, P(a major accident)=0.25
- (vi) Median loss amount due to this accident is 672 $\iff X_P^{50\%}(median \ loss) < b$
 - because: (1) P(a minor accident) = 0.75; (2) $X|minor \sim Uniform[0, b]$

$$\Longrightarrow \underbrace{P(X < b)}_{0.75} * \underbrace{Pr(X|X < b)}_{uniform[0, b]} = 0.75 * \frac{672 - 0}{b - 0} = 50\% => b = 1008$$

Then, mean(loss amount) =
$$\underbrace{P(X < b)}_{0.75}$$
 * $\underbrace{E(X|X < b)}_{uniform[0, 1008]}$ + $\underbrace{P(X \ge b)}_{0.25}$ * $\underbrace{E(X|X \ge b)}_{uniform[1008, 3*1008]}$
= $0.75 * \frac{0+1008}{2} + 0.25 * \frac{1008+3*1008}{2} = 882$

 $^{^{1}}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.

 $^{^{2}}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

(1.c) Discrete

Definition: probability density $p(x) = \frac{1}{n}$, for n = 1, 2, 3..., nmean $E(X) = \frac{1+n}{2}$ variance $Var(X) = \frac{n^2-1}{2}$ (variance formula is rarely asked in the exam)

For example: give $n = 1, 2, 3 \Longrightarrow$ the probability of each point is $\frac{1}{3}$

(1.d) Generalized Version: Beta Distribution

Definition: probability density $f(x, a, b) = \frac{\tau(a+b)}{\tau(a)\tau(b)} x^{a-1} (1-x)^{b-1} \quad (0 \le x \le 1)$ where $\tau(a) = (a-1) * (a-2) * \dots * 1$

When a = b = 1, Beta Distribution \Rightarrow Uniform Distribution

Mean, Variance, and Mode of this distribution:

$$E(X) = \frac{a}{a+b} \quad Var(X) = \frac{ab}{(a+b)^2(a+b+a)} \quad mode = \frac{a-1}{a+b}$$

(2) Joint Uniform Distribution: Double Variables (Continuous)

(2.a) Independent X and Y: If (i) $X \sim Uniform [a, b], Y \sim Uniform [c, d]$ (ii) X and Y are independent Then, $f(x, y) = \frac{1}{b-a} * \frac{1}{c-d}$

(2.b) Geometrical Method: Probability = $\frac{A}{B}$, A : target area, B : total area

Example (2.b.1): give $x \sim Uniform$ [0, 30], $Y \sim Uniform$ [0, 20] Question: What is P(Y < X - 5)?

Solve:
$$P(Y < X - 5) = \frac{A}{B} = \frac{trapezoidal \ area}{30*20} = \frac{\frac{1}{2}(upper \ bottom + lower \ bottom)*high}{30*20} = \frac{300}{600}$$

Example (2.b.2): the joint distribution of X and Y is uniformly distributed on the circle of radius centered at the origin $O_{i} = \frac{1}{2} \frac{1}{2}$

Question: What is P(X > 0.5)?

Solve: $P(X > 0.5) = \frac{A}{B} = \frac{sector \ area - area \ of \ right \ triangle}{sector \ area} = 0.1955$

Useful problem-solving method: $\int_{m}^{n} (x+b)dx = \int_{m}^{n} (x+b)d(x+b) = \int_{m}^{n} \frac{1}{2}d(x+b)^{2} = \frac{1}{2}(x+b)^{2}|_{m}^{n} = \frac{1}{2}(n+b)^{2} - \frac{1}{2}(m+b)^{2} = \frac{1}{2}(n+b$