SOA and CAS: Exam P, Probability ${ }^{1]}$ Chapter 16 and 26: Uniform Distribution

Yi Li ${ }^{2}$

January 13, 2024

Chapter 16: Uniform Distribution: Single Variable
 Chapter 26: Joint Uniform Distribution

(1) Single Variable: Continuous, Conditional, Distrete, and Generalized Versions
(1.a) Continuous

Definition: probability density $f(x)=\frac{1}{b-a}(a \leq x \leq b)$

$$
\begin{aligned}
& \text { cumulative distribution } F_{X}(x)=\left\{\begin{array}{rc}
0 & (x<a) \\
\frac{x-a}{b-a} & (a \leq x \leq b) \\
1 & (x>b)
\end{array}\right. \\
& \text { mean and variance } E(X)=\frac{a+b}{2} ; \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

For example: give $X \sim$ Uniform $[0,1000]$ with "policy limit 600"
Question: What is the "Average Benefit"?

Solve: Average benefit $E(X)=\underbrace{\text { Expected Value over }[0,600]}_{\text {part } 1}+\underbrace{\text { Expected Value over }(600,1000]}_{\text {part } 2}$

$$
=60 \% * \frac{600-0}{2}+40 \% * 600=420
$$

Alternative Method: $E(X)=\int_{0}^{600} x * \underbrace{f(x)}_{\frac{1}{1000-0}} d x+\int_{600}^{1000} 600 * \underbrace{f(x)}_{\frac{1}{1000-0}} d x=420$
(1.b) Conditional

Porperty: Let $X \sim$ Uniform $(a \leq x \leq c)$, some $\mathrm{b}>\mathrm{a}$
Then, $X \mid X>b \sim$ Uniform $(b<x \leq c)$

$$
X \mid X \leq b \sim \text { Uniform }(a \leq x \leq b)
$$

For example:
(i) Let X be the loss amount
(ii) If the accident is minor, then X follows a Uniform $[0, \mathrm{~b}] \Longleftrightarrow X \mid$ minor \sim Uniform $[0, b]$
(iii) If the accident is major, then X follows a Uniform[b, 3 b$] \Longleftrightarrow X \mid$ major \sim Uniform $[b, 3 b]$
(v) $P($ a minor accident $)=0.75, \quad P($ a major accident $)=0.25$
(vi) Median loss amount due to this accident is $672 \Longleftrightarrow X_{P}^{50 \%}$ (median loss) $<b$
because: (1) $P($ a minor accident $)=0.75$; (2) X|minor \sim Uniform $[0, b]$

$$
\Longleftrightarrow \underbrace{P(X<b)}_{0.75} * \underbrace{\operatorname{Pr}(X \mid X<b)}_{\text {uniform }[0, b]}=0.75 * \frac{672-0}{b-0}=50 \%=>b=1008
$$

$$
\text { Then, mean(loss amount) } \begin{aligned}
&=\underbrace{P(X<b)}_{0.75} * \underbrace{E(X \mid X<b)}_{\text {uniform }[0,1008]}+\underbrace{P(X \geq b)}_{0.25} * \underbrace{E(X \mid X \geq b)}_{\text {uniform }[1008,3 * 1008]} \\
&=0.75 * \frac{0+1008}{2}+0.25 * \frac{1008+3 * 1008}{2}=882
\end{aligned}
$$

[^0](1.c) Discrete

Definition: probability density $p(x)=\frac{1}{n}$, for $n=1,2,3 \ldots, n$
mean $E(X)=\frac{1+n}{2}$
variance $\operatorname{Var}(X)=\frac{n^{2}-1}{2}$ (variance formula is rarely asked in the exam)
For example: give $n=1,2,3 \Longrightarrow$ the probability of each point is $\frac{1}{3}$
(1.d) Generalized Version: Beta Distribution

Definition: probability density $f(x, a, b)=\frac{\tau(a+b)}{\tau(a) \tau(b)} x^{a-1}(1-x)^{b-1}(0 \leq x \leq 1)$

$$
\text { where } \tau(a)=(a-1) *(a-2) * \ldots * 1
$$

When $a=b=1$, Beta Distribution \Rightarrow Uniform Distribution
Mean, Variance, and Mode of this distribution:

$$
E(X)=\frac{a}{a+b} \quad \operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(a+b+a)} \quad \text { mode }=\frac{a-1}{a+b-2}
$$

(2) Joint Uniform Distribution: Double Variables (Continuous)
(2.a) Independent X and Y : If (i) $X \sim$ Uniform $[a, b], Y \sim$ Uniform $[c, d]$
(ii) X and Y are independent

Then, $f(x, y)=\frac{1}{b-a} * \frac{1}{c-d}$
(2.b) Geometrical Method: Probability $=\frac{A}{B}, A:$ target area, $B:$ total area

Example (2.b.1): give $x \sim$ Uniform $[0,30], Y \sim U n i f o r m ~[0, ~ 20]$
Question: What is $P(Y<X-5)$?
Solve: $P(Y<X-5)=\frac{A}{B}=\frac{\text { trapezoidal area }}{30 * 20}=\frac{\frac{1}{2}(\text { upper bottom }+ \text { lower bottom }) * \text { high }}{30 * 20}=\frac{300}{600}$
Example (2.b.2): the joint distribution of X and Y is uniformly distributed on the circle of radius centered at the origin
Question: What is $P(X>0.5)$?
Solve: $P(X>0.5)=\frac{A}{B}=\frac{\text { sector area }- \text { area of right triangle }}{\text { sector area }}=0.1955$

Useful problem-solving method: $\int_{m}^{n}(x+b) d x=\int_{m}^{n}(x+b) d(x+b)=\int_{m}^{n} \frac{1}{2} d(x+b)^{2}=\left.\frac{1}{2}(x+b)^{2}\right|_{m} ^{n}=\frac{1}{2}(n+b)^{2}-\frac{1}{2}(m+b)^{2}$

[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

