SOA and CAS: Exam P, Probability
 Chapter 15: Conditional Moments

Yi Li ${ }^{\text {² }}$
January 13, 2024
(1) Two Cases: Discrete and Continue
(1.a) Discrete: Property

$$
\begin{aligned}
\hline \hline E[g(Y) \mid X=x] & =\sum_{i} g\left(y_{i}\right) * \underbrace{P(Y \mid X=x)}_{\frac{P\left(Y=y_{i} \mid X=x\right)}{P_{X}(X=x)}} \text {, where } P_{X}(X=x)=\sum_{i} p\left(y_{i}, x\right) \\
& =\sum_{i} g\left(y_{i}\right) * \frac{P\left(Y=y_{i} \mid X=x\right)}{\sum_{i} p\left(y_{i}, x\right)}
\end{aligned}
$$

For example: give the joint density distribution function
Question: What is $\operatorname{Var}[Y \mid X=1]$?

Joint Density	Y		
	1	2	3
1	$\underbrace{0.1}_{(Y=1, X=1)}$	$\underbrace{0.2}_{(Y=2, X=1)}$	$\underbrace{0.3}_{(Y=3, X=1)}$
X 2	$\underbrace{0.1}_{(Y=1, X=2)}$	$\underbrace{0.2}_{(Y=2, X=2)}$	$\underbrace{0.1}_{(Y=3, X=2)}$

Solve: Step 1: Let $g(Y)=Y$, which can take values: 1, 2, 3

$$
\begin{aligned}
E[g(Y) \mid X=1]= & E[Y \mid X=1]=\sum_{i=1}^{3} g\left(y_{i}\right) * \underbrace{P(Y \mid X=1)}_{\frac{P\left(Y=y_{i} \mid X=1\right)}{P_{X}(X=1)}} \\
= & 1 * P(Y=1 \mid X=1) \\
& +2 * P(Y=2 \mid X=1) \\
& +3 * P(Y 3=3 \mid X=1) \\
= & 1 * \frac{1}{P(X=1, Y=1)+P(Y=1, X=1)} \begin{aligned}
P(X=1, Y=2)+P(X=1, Y=3) \\
P(Y=2, X=1)
\end{aligned} \\
& +2 * \frac{1, Y}{P(X=1, Y=1)+P(X=1, Y=2)+P(X=1, Y=3)} \\
& +3 * \frac{P(Y=3, X=1)}{P(X=1, Y=1)+P(X=1, Y=2)+P(X=1, Y=3)}
\end{aligned}
$$

Step 2: Let $g(Y)=Y^{2}$, which can take values: $1,2,3$

$$
\begin{aligned}
& E[g(Y) \mid X=1]=E\left[Y^{2} \mid X=1\right]=\sum_{i=1}^{3} g\left(y_{i}\right) * \underbrace{P(Y \mid X=1)}_{\frac{P\left(Y-y_{i} \mid X=1\right)}{P_{X}(X=1)}} \\
& =\quad 1^{2} * \frac{P(Y=1, X=1)}{P(X=1, Y=1)+P(X=1, Y=2)+P(X=1, Y=3)} \\
& +2^{2} * \frac{P(Y=2, X=1)}{P(X=1, Y=1)+P(X=1, Y=2)+P(X=1, Y=3)} \\
& +3^{2} * \frac{P(Y=3, X=1)}{P(X=1, Y=1)+P(X=1, Y=2)+P(X=1, Y=3)}
\end{aligned}
$$

Step 3: $\operatorname{Var}[Y \mid X=1]=E\left[Y^{2} \mid X=1\right]-\{E[Y \mid X=1]\}^{2}$

$$
\begin{aligned}
E[g(Y) \mid X=x] & =\int_{\text {over } y} g(y) * \underbrace{f_{Y \mid X}(y \mid x)}_{\frac{f_{Y \mid X}(x, y)}{f_{X}(x)}} d y ; \text { where } \underbrace{f_{X}(x)}_{\text {Constant }}=\underbrace{\int_{\text {over }} f(x, y) d y}_{\text {Constant }} \\
& =\int_{\text {over } y} g(y) * \underbrace{\frac{f_{Y \mid X}(x, y)}{f_{X}(x)}}_{\text {Constant }} d y \\
& =\underbrace{\frac{1}{f_{X}(x)}}_{\text {Constant }} \int_{\text {over } y} g(y) * f_{Y \mid X}(x, y) d y
\end{aligned}
$$

(1.b) Continue: Property

For example: Joint density distribution function is

$$
f(x, y)=1.2\left(x^{2}+y\right) \quad(0 \leq x \leq 1,0 \leq y \leq 1)
$$

Question: What is $\operatorname{Var}[Y \mid X=0.2]$?
Solve: Step 1: Let $g(Y)=Y$

$$
E[g(Y) \mid X=0.2]=\int_{0}^{1} y * \frac{f_{Y \mid X}(x=0.2, y)}{f_{X}(x=0.2)} d y=\int_{0}^{1} y * \frac{1.2\left(0.2^{2}+y\right)}{\int_{0}^{1} 1.2\left(0.2^{2}+y\right) d y} d y
$$

$$
=\frac{1}{a} \int_{0}^{1} y *\left[1.2\left(0.2^{2}+y\right)\right] d y
$$

Step 2: Let $g(Y)=Y^{2}$

$$
E[g(Y) \mid X=0.2]=E\left[Y^{2} \mid X=0.2\right]=\frac{1}{a} \int_{0}^{1} y^{2} *\left[1.2\left(0.2^{2}+y\right)\right] d y
$$

Step 3: $\operatorname{Var}[Y \mid X=0.2]=E\left[Y^{2} \mid X=0.2\right]-\{E[Y \mid X=0.2]\}^{2}$

[^0]
[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

