SOA and CAS: Exam P, Probability ${ }^{1}$ Chapter 13 and 28: Joint Moments

Yi Li ${ }^{2}$
January 13, 2024

Chapter 13 Joint Moments
 Chapter 28 Joint Moments for Continuous Random Variables

(1) Two Cases: Discrete and Continue
(1.a) Discrete

$$
\begin{equation*}
E[g(X, Y)]=\underbrace{\sum_{y}}_{x} \underbrace{\sum g}_{y} g(x, y) * P(X=x, Y=y) \tag{1}
\end{equation*}
$$

For example: give the "joint probability" as follows

$$
\begin{array}{|c|}
\hline \hline \text { Joint Probability } \\
\hline P(X=1, Y=1)=0.4 \\
\hline P(X=2, Y=1)=0.2 \\
\hline P(X=3, Y=1)=0.1 \\
\hline P(X=1, Y=2)=0.2 \\
\hline P(X=2, Y=2)=0.1 \\
\hline \hline
\end{array}
$$

Then, we have

Y	Probability
1	$P(Y=1)=P(X=1, Y=1)+P(X=2, Y=1)+P(X=2, Y=1)=0.4+0.2+0.1=0.7$
2	$P(Y=2)=P(X=1, Y=2)+P(X=2, Y=2)=0.2+0.1=0.3$

Thus, $E\left(Y^{2}\right)=\underbrace{(Y=1)^{2}}_{1^{2}} * P(Y=1)+\underbrace{(Y=2)^{2}}_{2^{2}} * P(Y=2)=1^{2} * 0.7+2^{2} * 0.3$

$$
\begin{aligned}
& E(Y)=\underbrace{(Y=1)}_{1} * P(Y=1)+\underbrace{(Y=2)}_{2} * P(Y=2)=1 * 0.7+2 * 0.3 \\
& \operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}
\end{aligned}
$$

(1.b) Continue

$$
\begin{equation*}
E[g(X, Y)]=\int_{\text {over } y}\left[\int_{\text {over } x} g(x, y) * f(x, y) d x\right] d y \tag{2}
\end{equation*}
$$

For Example (2.1): give $f(x, y)=1.2\left(x^{2}+y\right) \quad(0 \leq x \leq 1,0 \leq y \leq 1)$
Question: What is $E(X+Y)=$?
Solve: we know $g(X, Y)=X+Y$ and $E[g(X, Y)]=\int_{\text {over } y}\left[\int_{\text {over }} g(x, y) * f(x, y) d x\right] d y$

$$
\text { Thus, } E(X+Y)=\underbrace{\int_{\mathbf{0}}^{\mathbf{1}}}_{\text {full range }}[\underbrace{\int_{\mathbf{0}}^{\mathbf{1}}}_{\text {full range }} \underbrace{(x+y)}_{g(x, y)} * \underbrace{1.2\left(x^{2}+y\right)}_{f(x, y)} d x] d y=1.2
$$

[^0]For Example (2.2): give $f(x, y)=2 \quad(0 \leq x \leq y \leq 1)$
Question: What is $E\left(X Y^{2}\right)=$?
Solve: we know that $g(X, Y)=X Y^{2}$ and $E[g(X, Y)]=\underset{\text { over } y}{ }\left[\int_{\text {over } x} g(x, y) * f(x, y) d x\right] d y$ Thus, $E\left(X Y^{2}\right)=\underbrace{\int_{0}^{\mathbf{1}}}_{\text {full range }}[\underbrace{\int_{0}^{\mathbf{y}}}_{\text {line parallel to } x} \underbrace{x y^{2}}_{g(x, y)} * \underbrace{2}_{f(x, y)} d x] d y$

* X range: draw a line parallel to x-axis
* Y range: full range, because we have already considered all possible value of X

For Example (2.3): give $f(x, y)=1 \quad(0 \leq x \leq 1,0 \leq y \leq 1)$
Question: What is $E\left(X Y^{2}\right)=$?
Solve: we know that $f(x, y)=1 \Longrightarrow X$ and Y are independent Thus, $E\left(X Y^{2}\right)=E(X) * E\left(Y^{2}\right)$

where $E\left(Y^{2}\right)=\underbrace{\int_{0}^{1}}_{\text {full range }} y^{2} * f_{Y}(y) d y ; \quad(Y$ range: $0 \leq y \leq 1$ as given $)$

$$
f_{Y}(y)=\int_{0}^{1} f(x, y) d x=\frac{1}{2} \quad(0 \leq y \leq 1)(X \text { range: } 0 \leq x \leq 1 \text { as given })
$$

[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

