SOA and CAS: Exam P, Probability ${ }^{1}$ Chapter 11 and 15: Joint Distribution

Yi Li ${ }^{2}$

January 13, 2024

Chapter 11 Joint Distribution
 Chapter 25 Joint Distribution for Continuous Random Variables

(1) Multiple random variables: If X, Y, Z are mutually independent, then we have

$(i) \rho_{X, Y}=0, \quad \rho_{X, Z}=0, \quad \rho_{Y, Z}=0$
$($ ii) $\operatorname{Cov}(X, Y)=0, \quad \operatorname{Cov}(X, Z)=0, \operatorname{Cov}(Y, Z)=0$
$($ iii $\operatorname{Var}(X+Y+Z)=\operatorname{Var}(X)+\operatorname{Var}(Y)+\operatorname{Var}(Z)$
$(i v) E(X Y)=E(X) * E(Y)$
$(v) p(x, y, z)=p(x) * p(y) * p(z)$
$(v i) f(x, y, z)=f(x) * f(y) * f(z)$
(vii) if $F(x, y)$ is the product of "function x " and "function y "
then we know, (a) X and Y are independent
(b) $X^{\prime} s$ df is the "function $x ", \quad Y^{\prime} s$ df is the "function $y "$
(viii) if $f(x, y)=a$ (constant), for example: $f(x, y)=3$
then, X and Y are independent $\Longleftrightarrow f(x, y)=f(x) * f(y)$

(2) Definition:

$$
\begin{aligned}
& \text { (i) } F(x, y)=(X \leq x \text { and } Y \leq y) \\
& \text { (ii) } P(a<x \leq b, c<y \leq d)=F(b, d)-F(a, d)-F(b, c)+F(a, c)
\end{aligned}
$$

(3) Give "joint pdf $f(x, y)$ ", calculate cdf:

Type I: $f(x, y)=1.2\left(x^{2}+y\right) \quad(0 \leq x \leq 1,0 \leq y \leq 1)$
Then, $\operatorname{Pr}(X \leq 0.5, Y \leq 0.4)=\int_{0}^{0.5} \int_{0}^{0.4} 1.2\left(x^{2}+y\right) d y d x$
Type II: $\operatorname{Pr}(X+Y \leq 0.8)$
Then, $\operatorname{Pr}(X+Y \leq 0.8)=\int_{0}^{0.8} \int_{0}^{0.8-x} 1.2\left(x^{2}+y\right) d y d x$
(that is: x full range, y into x by drawing a line parallel to y)
Type III: $\operatorname{Pr}(X+Y>0.8)=1-\operatorname{Pr}(X+Y \leq 0.8)$, where $\operatorname{Pr}(X+Y \leq 0.8)$ is shown in Type II
(4) Independent:

If $F(x, y)$ is the product of "function x " and "function y "
Then (4.1) X and Y are independent
(4.2) $X^{\prime} s \mathrm{df}$ is the "function x ", $Y^{\prime} s \mathrm{df}$ is the "function y "

For example: $F(x, y)=\left[1-(0.5)^{x+1}\right]\left[1-(0.3)^{y+1}\right]$
Then (1) X and Y are independent
(2) $F_{X}(x)=\left[1-(0.5)^{x+1}\right]$
$F_{Y}(y)=\left[1-(0.3)^{y+1}\right]$

[^0]
[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com. This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com

