SOA and CAS: Exam P, Probability ${ }^{1}$
 Chapter 10: Mode

Yi Li ${ }^{2}$
January 13, 2024
(1) Defintion: Mode measures the "center of a distribution", besides mean and medium ${ }^{3}$
(2) Discrete and Continuous Cases:

(2.2) Discrete:

(2.2.a) Mode: the observation that appears most frequently For example: $\{1,2,2.5,2.5, \mathbf{3}, \mathbf{3}, \mathbf{3}, 4,2\} \Longrightarrow$ "mode" is 3
(2.2.b) Mode: the event has the highest probability

For example: $P(N=0)=0.1$

$$
\begin{aligned}
& P(N=1)=0.2 \\
& P(N=2)=0.7 \Longrightarrow \text { "mode" is } 2
\end{aligned}
$$

(2.3) Continue: two steps to calculate the mode

$$
\begin{array}{ll}
\text { Step 1: } & \frac{d f_{X}(x)}{d^{x} x}=0=>x=\left\{x_{1}, x_{2}\right\} \\
\text { Step 2: } & \frac{d^{2} f_{X}(x)}{d x^{2}}<0=>x=x_{1}\left(\text { delete } x_{2}\right)
\end{array}
$$

For example: Question gives $f_{X}(x)=x^{2}(1-x)$
What is the mode?

$$
\text { Step 1: } \frac{d f_{X}(x)}{d x}=\frac{d\left[x^{2}(1-x)\right]}{d x}=x(2-3 x)=0=>x_{1}=0 \text { or } x_{2}=\frac{2}{3}
$$

$$
\text { Step 2: } \frac{d^{2} f_{X}(x)}{d x^{2}}=\frac{d^{2}\left[x^{2}(1-x)\right]}{d x^{2}}=2-6 x<0 \Rightarrow \text { mode }=x_{2}=\frac{2}{3}
$$

[^0]
[^0]: ${ }^{1}$ The purpose of the use is non-commercial research and/or private study. Please do not copy or distribute without permission of the author.
 ${ }^{2}$ Email: liyifinhub@outlook.com This note was drafted when I was preparing for the exam. Please email me if you find any errors. My personal website http://www.yilifinhub.com
 ${ }^{3}$ Mean is the expected value and medium is the $50^{\text {tin }}$ percentile

